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The Heimholtz equation (4 + K®#?}u= f with a variable index of refraction # and a
suitable radiation condition at infinity serves as a model for a wide variety of wave
propagation problems. Such problems can be solved numerically by first truncating the given
unbounded domain, imposing a suitable outgoing radiation condition on an artificial boun-
dary and then solving the resulting problem on the bounded domain by direct discretization
(for example, using a finite element method). In practical applications, the mesh size 4 and the
wave number K are not independent but are constrained by the accuracy of the desired com-
putation. It will be shown that the number of points per wavelength, measured by (K#)~*, is
not sufficient to determine the accuracy of a given discretization. For example, the guantity
K*h? is shown to determine the accuracy in the L? norm for a second-order discretization
method applied to several propagation models.  © 1985 Academic Press, Inc.

INTRODUCTION

The Helmholtz equation
Au+ K*n*u=0, (1.1)
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where K is the wave number and n(x) is the index of refraction, describes a wide
variety of wave propagation phenomena through an inhomogeneous medium.
Inhomogeneities are represented by spatial variations in n(x) and also by interfaces
and scattering surfaces. Equation (1.1) is fundamental in acoustics, in particular, in
underwater acoustics [7, 8], duct acoustics [2, 10, 12], and acoustical scattering
(5] In addition, certain models of electromagnetic and elastic wave propagation
can be described by (1.1) [11, 12]. Vector formulations of (1.1) describe general
electromagnetic and elastic wave propagation [15]. Finally, the propagation of
pulse-like waves can be reduced to an analysis of (1.1) after Fourier transforming
the time variable [ 1].

If the wave length 4 (=2n/K) is small relative to the other length scales in the
problem, solutions to (1.1) can be approximated by asymptotic methods. However,
if A is of the same order as some characteristic length scale, these expansions can
break down and the problem must be, in general, solved by numerical methods.
The methods we are considering are based on truncating the domain in which the
wave propagation is occurring and imposing a suitable outgoing radiation con-
dition on an artificial boundary. The resulting problem is then solved on the boun-
ded domain by directly discretizing (1.1). Such a method is described in [4], where
an efficient technique to solve the resulting linear system of equations is also
introduced.

In general, radiation conditions do not completely absorb all reflections. The
total error in the numerical solution of (1.1) is the sum of two errors: the error due
to the approximate radiation condition and the discretization error due to the
approximation of the continuous problem by a discrete problem. In this paper we
will analyze only the discretization errors due to a standard finite element
approximation scheme for (1.1), on a bounded domain with a suitable radiation
condition.

In any wave propagation problem there are at least three important and distinct
length scales. These are /, the diameter of the truncated computational region; a, the
diameter of the region containing the inhomogeneities or other effects which distort
free space wave propagation; and 4, the mesh size. Since K has units (length)~?,
this gives three nondimensional quantities Ka, K/, and Kh which relate these
characteristic lengths to the wavelength.

(Kh) ! is the number of grid points per wavelength (up to a constant factor) and
has been used as a measure of accuracy by many authors (see, for example,
[2,7,13] and the references contained therein). Ka is essentially the number of
wavelengths in the inhomogeneous region and is a measure of the degree of distor-
tion of the solution from free space wave propagation. K/ is a measure of the num-
ber of wavelengths in the computational domain. It depends on the effectiveness of
the radiation boundary condition in simulating outgoing radiation and on the
positions at which the solution is desired. In general, the computational domain is
fixed and includes all the inhomogeneties. The wave number then varies over some
range of physical interest.

In this paper it will be established that K4 is not a sufficient indicator of the trun-



398 BAYLISS, GOLDSTEIN, AND TURKEL

cation error of a discrete approximation to (1.1). The arguments, in general, will be
given in the context of a finite element discretization, nevertheless we expect that
similar results are valid for finite difference approximations. It will be shown that
the discretization error depends on both K/ and KA. Thus, when the computational
domain is fixed, discretization errors will grow as K increases even though the num-
ber of points per wavelength remains fixed. If a finite element method accurate to
order m is used, an error bound of O(K™h™~ ') will be established for errors in the
H'-norm. Furthermore, an error bound of

O(K™ 1™y (1.2)

will be established for errors in the L?-norm, where o >0 depends on both the
geometry of the problem and the radiation condition. This estimate is suboptimal in
the sense of approximation theory for the finite element subspace. We stress that
this analysis is only for the discretization error and does not include the errors due
to the approximation of the radiation condition at a finite boundary.

Estimate (1.2), with =0, was used in [6] in discussing the usefulness of the
multigrid method to solve the Helmholtz equation. In Section 2, (1.2) will be
established rigorously in a fairly general setting. It will be shown that a =0 is the
most favorable bound and is sharp for a one-dimensional model problem but that
in general &> 0. The results are obtained from a standard finite element error
analysis combined with some nonstandard lemmas bounding the solution in term of
the data and K. A reader only interested in the consequences of the theory can skip
Section 2 and just read the precise statement of Theorem 2.2. Numerical results will
be presented in Section 3 validating the theory in a waveguide geometry. In Sec-
tion 4 several practical consequences of this theory will be discussed.

2. ERROR ESTIMATES

We now outline the theoretical results. We first consider the model problem

[—d—(K+i5K)] u(x)=f(x), xeQ, (2.1a)
ou
5= 0, on 0Q, (2.1b)

where 6 >0, K> 0, Q is a bounded domain in R (N =1, 2, 3) with a smooth boun-
dary 09, and f(x) smooth.

Remark 2.1. The term 6K is introduced so that (2.1) is a well-posed boundary
value problem. In practical problems this is accomplished by the radiation boun-
dary condition.



NUMERICAL COMPUTATION OF WAVES 399

To approximate (2.1) we use a finite element method and introduce a variational
formulation. Let

a(u, v) = jﬂ [V V5 — (K2 + i6K) u(x) 5(x)] dx

and

(i) =] f0x)olx)dx,

then the weak form of (2.1) is

a(u,v)=(f,v) allve H(Q), (2.2)

where H'(Q) denotes the standard Sobolev space. Given a subspace S$* c H!(Q2) the
finite element approximation is the function u" € $* such that

a(u”, v*)=(f,v")  forall v"e S". (2.2")

We assume that L* functions can be approximated to order 4™ by elements of S”.
We can then prove the following theorem.

THEOREM 2.1. Suppose that u satisfies (2.2) and we H"(Q2). Then there exists a
unique solution u” of (2.2') provided K*h is sufficiently small. Furthermore, the follow-
ing estimates hold for the error ¢ = u—u",

le®ll s < Coub™ (1 + K™){Nlutll 12+ ¥l )], (2.3a)
le®ll 2 < Couh™(1 + K™+ DY Nlull 12+ 7 1), (2.3b)

where C,, depends on m and Q but is independent of K and the data f, v, is given by

,"ﬁﬁ + Z ”]{,“fi m even, (2.42)
e TP EXVIHES— i)
K+l 2 0+1 : :

The sum in (2.4a) ranges over even indices while the sum in (2.4b) ranges over odd
indices.

The estimate (2.3b) shows that the L? error (normalized by |ul| +7,,(f)) for a
scheme of order m grows at least as fast as A”K™*+!. We shall later show that in
some cases this rate of growth is sharp. For certain classes of data f we can also
show that y,.(f) < C,,|lu]| .2, where C,, is 1ndependent of K and /. In these cases we
have the estimate

el 12 < Cou1 + K™+ 1) B™ ] 12 (2.5)

581/59/3-4
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and so we have bound on the relative error |e”|,2/|u)l 2. An example of such a
class is data f which can be expanded in a sufficiently rapidly convergent series of
eigenfunctions of —4 in Q.

A proof of Theorem 2.1 for the model problem (2.1) will be presented elsewhere.
The proof depends on the finite element analysis of [16] together with elliptic
estimates and the following bound of the solution in terms of the data

C
faall L2(82) SE (FAPER (2.6)

where C is independent of K and f. For more general problems, (2.1b) is replaced
by a radiation condition (which can be local or nonlocal, see, e.g., [3, 8-12]). The
finite element analysis in [16] has been extended to problems with different
radiation conditions [9, 10]. However, (2.6) is not true, in general, and the
strongest bound that we can establish is

(RAFES (2.7)

C
llull LZ(Q)<K1_D,
where «>0 depends on the geometry, the dimension of the problem and the
radiation condition. In such cases we can establish the following bound for the
error e”:

le®ll 2oy < Cl K™ 14+ 1) K™ (lutl 20y + Yl F))- (2.8)

A proof of these results will appear elsewhere. We next consider the validity of
(2.7) for various problems with radiation boundary conditions. It can be shown
that for the one-dimensional problem

v,
_—— = AP ES
e K*u(x) = f(x), 0<xx1
29)

u(0)=0, g;(l)=iku(1),

where f(x) vanishes near x=1, (2.7) holds with a =0.
We next consider the Helmholtz equation in a Cartesian waveguide. Let Q=
{xe[0,n], ye[0,n]}, and let f =0 near x ==, and consider the problem

(_A"—Kz)u(x’y)=f(x’y)’ (X,Y)EQ,

(2.10)
u(0, y)=0, u(x, m)=0, u,(x,0)=0, uyr, y)=T(u),

where T(u) is the global boundary operator for outgoing modes introduced in
[8, 10]. In subdomains where f =0, the solution to (2.9) can be expressed as a sum
of modes

u= 3 A;q,y)er, (2.11)
j=0
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where

gi(y)=cos((j+3%) y)
0=V K~ (j+4%)>

For K*—(j+1)>>0, the jth mode is propagating and outgoing. For
K?*—(j+1)* <0, the jth mode decays exponentially and is called evanescent. The
values {j-+1} are called cutoff frequencies. When K equals a cutoff frequency the
problem is not well posed.

We can show that (2.7) holds for (2.10) with o =1 provided X is uniformly boun-
ded away from a cutoff frequency. Furthermore (2.7) holds with o =0 when the
solution consists of a finite number of modes. Numerical results for a problem
similar to (2.10) will be presented in Section 3. Extensions of these results to
exterior problems will appear elsewhere.

For m=2, the L? estimate with & =0 shows that as K increases, the L? error
grows at a rate O(K>h?). To show that this growth rate is sharp we consider the dif-
ference equation in one dimension

uy—2u+u;_y + Kh*u;=0, (212)
as a second-order approximation to the equation
U+ Ku=0. (2.13)

Equation (2.12) corresponds to discretizing (2.13) with piecewise linear elements
and lumping the mass matrix (i.e., the terms involving K in the bilinear form). It
can be seen that the argument below is also valid without lumping.

Solutions to (2.12) are of the form

izjh izXj. ;
uj—e’zf = ", xj—jh,
where

zh= +Kh[1 + O((Kh)*)]. (2.14)

If we wish to approximate the outgoing solution (as x - +0), the (+ ) sign must
be chosen in (2.14) and the approximate solution is

= o'Fh = oKX 1+ 0((Kh)2)).
Therefore, the error ¢, is

= eucx,-[ o IXOUKH) _ 1]

1)

and if we consider a fixed region in x and assume K>A? small, we obtain

lejll 2/ Null 12 = O(K>H?).
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3. NUMERICAL RESULTS

To numerically validate the theory presented in Section 2, we consider a model
problem

Uge+u,,+ Ku=0, 0<x<n, 0Ky, (3.1)
with boundary conditions
u,(x, 0)=u(x, n)=0,
ux(0, y)=£(y),
u(m, y)=T(u),

where the boundary operator T will be described below. We consider three exam-
ples. In example 1, f(y) is chosen so that the exact solution is

u(x, yy=evk ‘O'stcosivz-,

and T(u)=i/K*>—0.25u. In examples 2 and 3, f is chosen so that the exact
solution is

M
u=y e cos((j+4) yy =K —-(j+1)>
=0

where M =4 for example 2 and M =7 for example 3. The boundary operator is the
global operator T(u) referred to earlier which was introduced in [8] for an
underwater acoustics propagation model. When /; is real, the j mode in the
solution has no decay in x and is called a propagating mode. When /, is imaginary,
the jth mode decays in x and is called evanescent.

A square N x N grid is used and the equations are solved by the preconditioned
conjugate gradient method described in [4]. Piecewise linear elements with lump-
ing are used. Normalized L, errors for the examples are shown in Table I-1II for
different values of K and N.

TABLE ]

Results for Example 1

K N Error Kh K3n?
416 65 0.0120 0.204 0.173
5.45 97 0.0137 0.178 0.173
6.60 129 0.0147 0.162 0.173
6.24 97 0.0182 0.204 0.260

832 129 0.0252 0.204 0.347
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TABLE I
Results for Example 2

K N Error Kh K3n?
4.16 65 0.0133 0.204 0.173
5.45 97 0.0120 0.178 0.173
6.60 129 00114 0.162 0.173
6.24 97 0.0165 0.204 0.260
8.32 129 0.0227 0.204 0.347

In Tables I and II the first three entries correspond to K*A? fixed while the first
and last two entries correspond to Kh fixed. It is clear from the tables that the
errors grow almost linearly in K for Kk fixed and are nearly constant for KA fixed.
In these examples, K is uniformly bounded away from the cutoff frequencies and the
estimate (2.5) is confirmed numerically. (We have observed that this scaling of the
error does break down as K and N are decreased. This is to be expected from the
estimate (2.5) as K approaches 0.)

In Table I1I the first two entries correspond to K>A” fixed and the first, third, and
fourth entries correspond to K fixed. For these entries, K is not close to a cutoff
frequency and the estimate (2.5) is again confirmed. The last three entries contain
values of K very near a cutoff frequency. In these cases the errors do not scale as
predicted and are in fact considerably worse. This is because the constant depends
on how close K is to a cutoff frequency. The errors that would be observed in prac-
tice depend on the sequence of K values, how close they are to cutoff frequencies,
and whether the modes close to cutoff are propagating or evanescent.

4. IMPLICATIONS

We conclude this paper by listing several computational implications of the
results in Section 2.

TABLE III

Resuits for Example 3

K N Error Kh K*h?
4,16 65 0.013 0.204 0.173
6.24 119 0.013 0.166 0.172
6.24 97 0.019 0.204 0.260
8.32 129 0.025 0.204 0.347
545 97 0.029 0.178 0.173
5.55 97 0.045 0.181 0.183

6.60 129 0.036 0.162 0.173
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(a) Accuracy evaluations will have to account for the number of wavelengths
in the computational domain. The number of points per wavelength will have to
increase with the number of wavelengths to maintain accuracy. Thus, the effects of
this theory would be expected to become more important as new numerical tech-
niques and computer technology make the numerical solution to (1.1) feasible for a
larger number of wavelengths. For the simple model problem (3.1) numerical
experiments with a second-order finite difference code indicate that we wish to
choose the number of points N in each direction to be N=0.8(K/)*? to achieve
approximately a 7% L? accuracy.

(b) The precise relationship between K and 4 to maintain a fixed accuracy
depends on both the order of the discretization scheme, the norm in which it is
necessary to maintain the accuracy, and also possibly on the geometry and the
boundary conditions. The advantages of using higher order methods are greater as
the number of wavelengths increases.

(c) Iterative methods for the solution of the linear systems of equations
obtained by discretizing (1.1) are usually analyzed by studying the convergence rate
for fixed K as h—0. In practice, K and h are constrained by a given accuracy
requirement and K increases over some interval. Thus, for a second-order method
and accuracy determined by the L, norm of the error, these methods should be
analyzed for K°h* fixed (provided (2.5) is valid) and K increasing for the
propagation modeis discussed in this paper.

Note added in proof. We have observed numerically a growth rate of the form (1.2) with &=} for a
Cartesian wave guide. Thus this estimate is sharp.
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